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Abstract

With the rapid advancement of artificial intelligence technology, the standardization and structured
management of Al models have become increasingly important. However, the fragmentation of
metadata standards severely compromises the interpretability, interoperability, and reusability of Al
models. This study begins with a comparative analysis of existing metadata standards and examines
the current application of model metadata across major Al model repositories. The analysis reveals
several critical issues in current practices, including inconsistencies in metadata structures and a lack
of semantic alignment. In response, this paper proposes an upper-level metadata ontology framework
to support the structured and semantic description of Al models, providing a theoretical foundation
for the future design of metadata interoperability mechanisms. Although the case study is limited in
sample size, it offers an empirical basis for subsequent refinement and extension. Future work will
focus on expanding the sample size and validating the framework in more diverse application
scenarios.
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1. Introduction

The breakthrough and rapid development of Artificial Intelligence (AI) technology is
undoubtedly a milestone event in the development of global science and technology in recent
years. In this process, “model” (Model) is the carrier of Al technology and the landmark
achievement. Broadly speaking, “Model” reflects a worldview, which is a simplified, abstract
and idealized description of a complex phenomenon or system in the real world ''l. In a narrower
sense, a “model” usually refers to a mathematical structure or algorithm that represents a law,
pattern, or relationship learned from data. The model extracts patterns and generates insights
from a variety of data materials by means of algorithms, constantly adjusting and optimizing
the degree of realism of the world it simulates.

However, with the rapid advancement of technology and breakthroughs in computational
power, many Al models have become increasingly complex, so much so that even developers
often struggle to fully interpret their behavior. This growing complexity has raised concerns
regarding the application of Al technologies in certain domains, prompting calls for enhancing
model interpretability through the adoption of the FAIR principles “*l. The data governance
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philosophy advocated by the FAIR principles provides an important pathway to improving the
interpretability of AI models by ensuring traceability, structured representation, and
standardized description of models and their associated data.

Nevertheless, the current FAIR framework is primarily designed for scientific data and
remains insufficient when applied to AI model management and interpretability research. In
particular, it requires substantial extensions in areas such as algorithm version control, training
data management, parameter provenance, and metadata representation of model behavior.
Viewing AI models as FAIR Digital Objects not only emphasizes the need for unique
identification, accessible mechanisms, and well-structured metadata, but also calls for a
systematic representation and governance of all phases of their lifecycle—including training
data, training logic, inference engines, and deployment environments. This perspective, which
treats Al models as “complex digital objects”, holds promise for advancing interpretability
research and trustworthy management practices in areas such as cross-system sharing,
regulatory auditing, and accountability attribution.

It is easy to see that there is a gap in expertise between producers and consumers of Al
services.Al model metadata, as a tool for describing the characteristics and attributes of a model,
plays multiple key roles in the Al ecosystem. First, metadata serves as a “digital identity card”,
containing basic key information such as model architecture, training data, performance
indicators, and applicable scenarios, which enables users to quickly understand the basic
features and capability boundaries of the model. Secondly, metadata provides the necessary
“connector” function, enabling the model to be integrated into existing systems. In addition,
metadata serves as an “audit trail”. Regulations such as the EU Al Act explicitly require high-
risk Al systems to provide technical documentation!*. All of these requirements are essentially
fulfilled by a well-developed metadata system. Overall, metadata plays the role of “control
center” in the entire life cycle of Al models, forming the basis of model operation and
maintenance.

This paper is centered around the specification of Al model metadata standards. The second
part introduces the development of major AI model metadata specifications. The third part
describes the application of Al model metadata specifications in mainstream warehousing
platforms through comparison. The fourth part then builds on the above work to design an Al
model unified metadata ontology.

2. State of the Art in Al Modeling Metadata Research

Overall, the current Al model metadata ecosystem presents a development trend of
standardization and fragmentation, and various organizations and platforms are promoting
the construction of metadata systems from different perspectives. According to incomplete
statistics, there are nearly 20 Al model metadata specifications running on different platforms.
These specifications can be categorized into Data Card, System Card, and Model Card. It is
important to note that these three classifications are not mutually exclusive; they cover
overlapping parts of the AI model lifecycle.

(1)Data Card. Al models are trained using data. The choice of data fundamentally affects the
behavior of the model. In practice, datacards are variously called Data Cards, Datasheets, Data
Statements, Dataset Nutrition Labels, and Dataset Development Lifecycle Documentation
Framework. datacards seek to answer seven categories of questions: motivation for dataset
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creation, dataset composition, data collection process, data preprocessing, dataset distribution,
dataset maintenance, and legal and ethical considerations. By providing a concise and
comprehensive overview of the “ingredients” of data, it lowers the barriers to standardized data
analysis, better supports decision-making and accountability, and enables developers and users
to better understand the uses and outputs of the model.

(2)System Card. A system card is a metadata specification or documentation tool focused on
describing the design of a machine learning system and its underlying algorithms, with the aim
of providing system-level technical transparency, reproducibility, and accountability
traceability. Unlike data cards and model cards, system cards examine how models interact with
each other, with datasets, methods, and with other ML components to form ML systems,
including system architecture, algorithmic choices, training strategies, hardware dependencies,
performance boundaries, and potential technical ethical risks. System cards are less uniformly
named. These are some examples of them: Factsheets, System Cards, Reward Reports for RL,
Robustness Gym, ABOUT ML. However, we also found that there are places where system cards
and model cards are mixed.

(3)Model Card. As opposed to data cards and system cards, which contain only parts of a
model, Model Card seeks to cover the core of an Al model throughout its lifecycle.In 2018, the
Google team took the lead in proposing Model Card, a standardized specification framework
for metadata for Al models.. The implementation and landing of Model Card is an important
step forward in Google's efforts to improve the transparency and interpretability of machine
learning models. interpretability of machine learning models. The original idea was to “publish
machine learning models with a short one- to two-page record”. In the same year, the World
Wide Web Consortium (W3C) proposed a set of specifications for describing Machine Learning
(ML) models - ML Schema!®!. successively introduced their own metadata specifications for Al
models. These standard specifications have the same goal and similar content, although there
are still differences in consistency, but still better promote the openness and transparency of Al
models, and also drive the research and practice in this field.

2.1. Comparison of Al model metadata specifications

With regard to the metadata specifications introduced by different organizations, this study
conducts a comprehensive comparative analysis of six major model description frameworks
proposed or adopted by leading institutions, including Model Card (Google)", ML Schema
(W30O), Al Factsheet (IBM)"), Al Service Cards (Amazon)®, System Card (OpenAl)”, and
Model Card (HuggingFace)™"\.

Through the comparative analysis of the above metadata specifications, we draw the
following conclusions:

(1)Metadata item naming heterogeneity. Metadata item naming heterogeneity refers to the
phenomenon of non-uniform naming of metadata items (or fields, attributes) used to describe
the same or similar information in six different specifications. This can lead to incompatible and
non-interoperable Al model metadata sets.

(2) The hierarchical structure is not clear enough. Firstly, there is a lack of unified
hierarchical division, i.e., the hierarchical structure varies greatly among different standard
specifications, making it difficult to achieve effective comparison, organization and
compatibility among different models.
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(3) Inadequate description and insufficient granularity. The first is that the description is not
comprehensive and complete. The fine granularity is coarse and fails to fully capture the key
features and complex information of the model, making it difficult to meet the demand for
model details in different scenarios.

(4) Complex and non-uniform description. Most of the existing standards and specifications
use natural language text for description, and a number of information may be described in
natural language under a metadata item, which leads to limitations in the scalability of the
standard specifications and reduces the efficiency of retrieval using the list of metadata items;
secondly, the description is not uniform, and different standards and specifications use different
descriptions, which increases the difficulty of interoperability between the specifications and
the models.

3. Al model metadata applications

After combing through the current mainstream Al model metadata standards and specifications,
it is not difficult to find that, despite the differences in the content of different standards, their
core objectives are highly consistent - that is, to improve the transparency, reusability and
traceability of models through structured metadata descriptions.

To examine the application of metadata standards in practice, we selected six of the most
representative Al model warehousing platforms at home and abroad - ModelScope,
PaddlePaddle, Openl, Hugging Face, Kaggle, and GitHub. In this study, three types of open
source models in the field of natural language processing, Llama, DeepSeek, and Vicuna, are
selected for case studies to compare the similarities and differences of their metadata
implementations on the above six model warehousing platforms. Although the sample size is
limited, considering that the three types of models are more typical, it can initially reveal the
usage and problems of model metadata on each platform. In future research, we will expand the
sample size by collecting platform data in bulk to further refine or verify the generalizability of
the conclusions. Through comparison, we draw the following conclusions:

(1) Shared metadata for widely used models. For DeepSeek and Llama, which are more
popular Al models, the descriptive metadata information of ModelScope, PaddlePaddle, Openl,
Hugging Face, and GitHub is exactly the same, with 9 primary and 9 secondary classes,
indicating that the above storage platforms share the metadata, and only Kaggle adopts its own
metadata template. For models that are not so widely used, the metadata adopted by the storage
platforms varies greatly. For example, ModelScope, PaddlePaddle, and Openl have very
different metadata description information for the model Vicuna.

(2) Except for Kaggle, the other five warehousing platforms will use different metadata
descriptive information templates for different AI models, As shown in Tablel.

(3) Domestic warehousing platforms will process the raw information. For example,
PaddlePaddle does a Chinese translation of the content. And ModelScope and Openl all use
English information.

Table 1

Example of the same metadata items for a warehousing platform
ModelScope and GitHub PaddlePaddle Openl and HuggingFace
1.Model Details 1. Model description 1.Model details
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1.1 Developed by 2. Model download method 1.1 Model type
1.2 Model type 3. Model loading method 1.2 Model date
1.3 License 4. Model inference method 1.3 Organizations developing
1.4 Fine-tuned from model 5. Model referencing the model
2.Model Sources information 1.4 Paper or resources for more
Repository. Blog. Paper. information
Demo 1.5 License
3.Uses 1.6 Where to send questions or
4.How to Get Started with the comments about the model
Model 2.ntended use
5.Training Details 2.1 Primary intended uses
6.Evaluation 2.2 Primary intended users
7 Difference between different 3.Training dataset
versions of Vicuna 4.Evaluation dataset

By investigating the mainstream Al model warehousing platforms and the mainstream Al
model metadata standard specifications, we can draw some conclusions as follows:

(1) Insufficient standardization is the most prominent challenge. So far, there is no unified
Al model metadata standard specification to completely cover the mainstream model
warehousing platforms, and the existing standard specification has a large degree of
dissimilarity.

(2)There are significant differences in the metadata schema defined by different
organizations and platforms, and there is little overlap of metadata fields between mainstream
platforms, and the fragmentation situation greatly increases the overall interoperability cost of
the system.

(3) There is a gap between the theoretical formulation of metadata specifications and their
practical implementation, and there is still room for improvement in the quality and usefulness
of metadata.

(4) An important feature of Al models is that they undergo continuous iteration and fine-
tuning. However, the existing metadata system lacks an effective automatic acquisition and
dynamic update mechanism, and version management is not perfect.

(5) The sharing of metadata between warehousing platforms is a temporary complementary
measure to the current lack of harmonized standards and specifications.

4. Ontology Construction for Al Models

Ontology serves as a critical theoretical foundation and technical framework for metadata
standardization. Due to constraints of time and scope, this paper focuses exclusively on the
construction of the ontology. aiming to provide a unified semantic foundation for integrating
heterogeneous model information. The ontology facilitates the explicit definition of key
concepts, attributes, and their relationships within AI models, thereby laying the groundwork
for the subsequent design of metadata interoperability mechanisms.

4.1. Principles and methods of construction

The earliest definition of an ontology was given by Neches in 1991, stating that an ontology
defines the basic terms, relations, and rules that constitute a domain's vocabulary, along with
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the interrelationships among these terms!"'.In 1993, Gruber gave the classic definition of an
ontology as an explicitly canonical description of a conceptual model . Subsequently,
ontology was introduced into the field of artificial intelligence and five ontology design criteria
were given, namely, clarity, consistency, extensibility, minimum coding bias, and minimum
ontological commitment "l Scholars in various countries have tried to define ontology from
different perspectives, but the academic community has not formed a unified definition of
ontology for the time being, but it is able to reach some basic consensus that ontology has the
basic features such as conceptualization, formalization, clarity, shareability, and domain
relevance.

With the in-depth study of ontology construction in academia, many ontology construction
methods have been proposed, such as METHONTOLOGY (chemical ontology modeling) ",
Ontology 101 seven-step approach (domain ontology modeling) **), OBO Foundry Principles
(biomedical ontology evolution) '), and Skeleton Method (business ontology modeling) "), In
this paper, we are oriented to ontology development for Al models in the field of artificial
intelligence, and adopt the seven-step method, which is the most common method for domain
ontology, for relevant ontology construction. First of all, it is clear that the research object is Al
models - specifically statistical and computational models constructed through data-driven
methods, whose core feature is to automatically optimize the parameters through training data
to complete specific tasks, and according to the technical paradigm, this research mainly focuses
on machine learning models and deep learning models. In order to improve the efficiency of
ontology construction, before designing, we combine the characteristics of AI models, give full
consideration to reuse existing domain ontologies, and then choose the tool Protegé 5.6.5 to
complete the visualization of ontology.

4.2. Principles and methods of construction
4.2.1. Conceptual Classes and Structural Hierarchy Definitions

Based on the full consideration of existing related ontology models, this paper reuses ML
Schema ! and AI Ontology (AION) ¥, and fuses them into four first-level classes, including
Model, Data, Task, and Evaluation, and at the same time, we focuse on adding three customized
first-level classes, including Environment, Accountability, and Personnel, with reference to the
relevant specifications such as Model Card '), Data Card %%, and the EU Al Act **), to meet
the requirements of covering all aspects of Al models. The constructed Al model ontology
covers a total of 7 core classes and 22 secondary subclasses, and the conceptual classes and their
hierarchical structure are shown in Figure 1.
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Figure 1: Ontological Conceptual Classes and Structural Hierarchy of AI Models: A Formal
Representation Framework.

(1) Mode: The Model class is used to describe the basic information and internal structure of
the Al model ontology, mainly contains four subclasses, namely: Metadata, Architecture,
Parameter and Technique. Metadata describes the basic information of a model, including the
model name, release date, update date, and version. Architecture, Parameter, and Technique
respectively describes a model's structural design, parameter configuration, and key
technologies

(2) Data: The Data class is used to characterize the data resources used in the development,
training and evaluation phases of the model, which is an important basis for understanding the
training context of the model and evaluating the credibility and fairness of the model. This class
contains three subclasses, namely: Training Dataset, Validation Dataset and Evaluation Dataset.

(3) Evaluation: The Evaluation class is used to describe the characteristics of model
performance evaluation and contains two subclasses: Metric and Performance, in which Metric
is used to define the evaluation indexes used in model evaluation to reveal whether the
evaluation method is representative and scientific; Performance is used to characterize the
actual performance of the model under specific evaluation conditions to support the credibility
release and reproducibility study of the model.

(4) Task: The Task class is used to describe the characteristics of the application tasks
undertaken by the model, contains four subclasses: Task Type, Intended Use, Applicability
Limitation and In-Out. Task Type describes the task category to which the model belongs;
Intended Use describes the target use of the model's design and release, which can be used to
identify the model's applicability scenarios; Applicability Limitation specifies the boundaries of
the model's use and its exclusion scenarios; In-Out Describe the input-output structure of the
model and its technical characteristics, including input-output format, maximum input length
and maximum generated output, etc.

(5) Personnel: The Personnel class is used to describe the personnel information related to
the development and management of the model, which is an important support for tracking the
responsibility and funding background of the model. This class contains three subclasses:
Developer, Funder, and Sharer. Developer describes the main developer of the model and the
development organization; Funder describes the organization or the source of the project that
financed the model development, which helps to identify the potential stakeholders; Sharer
refers to the person who shared the model for the first time in public or the person in charge of
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the release of the model, which emphasizes on the model version control, the responsibility of
open source licensing, and the commitment of continuous maintenance.

(6) Environment: The Environment class is used to describe the hardware and software
dependencies and sustainability impacts of the model runtime environment, contains three
subclasses: Hardware, Software, and Environmental Impact. Hardware describes the hardware
platform required to run the model, such as the type of computing resources and memory
configuration; Software characterizes the software dependencies required by the model, such
as operating system and virtual environment information; and Environmental Impact describes
the resource consumption and environmental impacts of the training and deployment of the
model, such as the carbon emission estimation.

(7) Accountability: The Accountability class is used to describe the systematic management
of legal compliance, ethical responsibility and potential risks during model development and
deployment, and is an important metadata to ensure the credibility and auditability of Al models.
This class contains three subclasses: Compliance, Risk, and Bias. Although Bias itself can be
categorized under Risk, it is increasingly seen as a separate assessment and compliance topic,
and is hereby separated into a subcategory to describe computational bias, data bias,
institutional bias, and so on, that may exist in the model.

4.2.2. Core Property Definitions

Object attributes reveal the association relationships between classes and are the basis for
logical reasoning in ontologies. A total of 16 object attributes exist in the Al model ontology
constructed in this study, and only the object attributes shown in Table 2 are listed in detail

here.

Table 2

Examples of object properties
Object Property Name  Explanation Domain Range
Has I/O specification Identify constraints on the format, Model In-Out

structure and length of input and
output data required by the model.

Is developed by Representation of model/data Model/Data  Developer
developers or R&D organizations.

Uses data The dataset used by the model. Model Data

Is driven by Task objectives or constraints for Model Task
modeling.

Uses evaluation metric  Indicators used for model Model Metric
evaluation.

Has performance Evaluation results generated under Metric Performance

an indicator.

Data attributes are able to represent static information and quantifiable features within class
instances. Combining the above reused ontologies and specifications, the data attributes are
additionally aligned according to the actual situation of the model. Limited to space, this paper
only lists the data attributes of some entities here, and the sample attributes are shown in Table
3.

Table 3
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Examples of data property

Class Data Property Name Domain Range
Metadata Model Name Metadata xsd:string
Release_Date xsd:date
Update_Date xsd:date
Model_Version xsd:string
Trianing  Dataset_Name Trianing Dataset xsd:string
Dataset
Dataset_Size xsd:float
Dataset_Source xsd:string
Dataset_Characteristic xsd:string
In-Out In-Out_Format In-Out xsd:string
In-Out__Length xsd:string
In-Out_ Precision xsd:string
Bias Bias_Type Bias xsd:string
Bias_Source xsd:string

In this study, Protégé Ontology Modeling Editor is chosen to visualize the Al model ontology,
and the conceptual classes, object attributes and data attributes of the AI model ontology are

shown in Figure 2.
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Figure 2: Core concepts and core attributes constructed based on Protégé.

5. Summary

The rapid development of Al technologies has imposed increasingly stringent requirements on
model interpretability and standardization. One of the core challenges currently facing the Al

model ecosystem is the fragmentation of metadata standards and the lack of interoperability.
This study systematically investigates this contradiction: on the one hand, the growing

complexity of Al models necessitates transparent and structured management; on the other
hand, the absence of unified standards hampers the efficiency of model development, sharing,

and deployment. In response to the emerging challenges of interpretability, traceability, and
governance brought about by the increasing complexity of AI models, this paper proposes and
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designs a unified metadata standard and ontological framework specifically tailored for Al
models.

This study conceptualizes Al models as complex digital objects and characterizes them
across their entire lifecycle. By integrating existing standards with ontological methodologies,
it establishes a dynamic metadata framework that comprehensively covers the full lifecycle of
Al models. This framework not only addresses fundamental attributes such as technical
parameters and data characteristics, but also innovatively incorporates a range of social
dimensions including task-driven functions, environmental dependencies, ethical risks, and
human accountability. In doing so, it achieves an organic integration of technical specifications
and societal values. This “techno-social” dual-perspective metadata system offers a new
paradigm for the trustworthy development of Al models. It simultaneously meets the technical
detail requirements of professional developers and responds to the transparency demands of
regulatory authorities and the broader public, thereby providing methodological support for
enhancing the transparency and trustworthiness of Al systems.
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